
To Cooperate or To Defect:
That’s the Prisoner’s Dilemma

Yüce Tekol
Eastern Mediterranean University

Computer Engineering Department
Gazimagusa, TRNC via Mersin 10, TURKEY

ytekol@ieee.org

Abstract

Prisoner’s Dilemma is the most studied game among evolutionary computation re-
searchers. The game is extremely simple to play: each player has only two choices,
either cooperation or defection. Nevertheless, this simplicity is just deceiving; the
game has very interesting consequences that effected economics, biology and evo-
lutionary computation. In this paper, we take a small trip together to explore the
most popular variant of the game: the iterated prisoner’s dilemma, following the
now classical approach to ”coevolve” strategies for it by using a genetic algorithm.

1 Introduction

Since its development in 1960’s, prisoner’s dilemma (PD) attracted attentions of many
scientists from several diverse fields such as economics, biology, game theory, com-
puter science and political science. The game is used to model the emergence of
cooperative behavior [10] in a population of selfish individuals. Dawkins [3] and
Dugatkin [4] give some interesting examples about this phenomenon in biology. Ap-
plications of the game in economics can be found in [8], and political science in [13].

Since Axelrod’s seminal paper [1], the dominant method to study PD has been
genetic algorithms (GAs), however other methods were also used; such as Evolutionary
Programming [5] and Ant Colony Optimization [12]. In this paper, we will explain how
to evolve strategies for PD using GAs. This paper is organized as follows: In Sections
2 and 3, I explain PD and GAs respectively in some detail; Section 4 contains the
experiment setup and results. Conclusions and future directions are given in Section 4.

1.1 Prisoner’s Dilemma

Prisoner’s dilemma is anon–cooperative, non–zerosumgame, played between two
players, where non–cooperative denotes that players have no communication prior to
the game and they don’t know each other’s decision until they both decided what to
do, and non–zerosum denotes that one player’s win does not necessarily mean other
player’s loss.

The story of PD is as follows: Joe and Bill are arrested by the police after a bank
robbery and put in seperate cells to be questioned. The investigators offer them both
the same deal. If one of them confesses and the other one keeps silent, the former
will be released while the latter will be sentenced to many years in prison. If both
confess, their sentence will be less. The prisoners also know that the investigators
don’t have much evidence, so if they both keep quiet, their penalty will not be very

serious. Knowing these facts, what should the prisoners do? Trust each other and co-
operate by keeping quiet or confess the crime and defect to the other one? Thus, each
player has two choices, either cooperation (C) or defection (D), and the payoff they
get for their choices are calculated according to Table 1. In this table, each cell holds
two values; left one is the row player’s payoff, right one is the column player’s pay-
off. The letters,R, S, T, P denote,reward payoff for mutual cooperation by keeping
quiet,sucker’spayoff to cooperate against a defecting opponent,temptationpayoff to
defect against a cooperating opponent andpunishmentpayoff for mutual defection, re-
spectively. For instance, if row player cooperates and column player defects, then the
former will get sucker’s payoff and the latter will get temptation payoff.

Column Player
Cooperate Defect

Row Cooperate R, R S, T
Player Defect T, S P, P

Table 1: Payoff matrix for prisoner’s dilemma.

The PD is defined by the following inequalities on the values ofS, P, R andT .

T > R > P > S (1)

2R > S + T (2)

Column Player
Cooperate Defect

Row Cooperate 3,3 0,5
Player Defect 5,0 1,1

Table 2: Payoff matrix used throughout the paper.

An instance of the table with appropriate values is shown in Table 2. According
to the tables 1 and 2, any rational player will choose defection no matter what the
other player chooses (5 > 3 and1 > 0), so both players will get 1 point. If they
cooperated though, they would get 3 points each, which is better than 1 point they
have. Unfortunately, in a one-shot game, the players can not resist to the temptation to
defect, so mutual cooperation never arises.

To overcome this problem, Axelrod [2, 1] used a variant of the game—iterated
prisoner’s dilemma—which, as its name implies, repeats the conventional game several
times with the number of repetitions unknown to both players. Extending the game
this way gives players the chance to build trust, retaliate defection, so the hope of
cooperation.

Using Axelrod’s representation, each chromosome in the population carries the
starting moves plus the cells of a lookup table which encodes all the possible moves
of two players which can rememberM previous games. ForM = 1, the lookup table
would be as in table 3.

The first letter in left column shows the player’s self–move, and the other letter
shows the opponent’s move; so the table is read as, “if Icooperatedand my opponent
cooperatedin the previous game then my action will beX for this game”, and “if I
defectedbut the other playercooperatedthen I will doZ”, etc.

CC X
CD Y
DC Z
DD W

Table 3: Lookup table forM = 1. X, Y, Z, W are either C or D.

In order to have a compact representation, cells of the right column of the lookup
table are written in a string from top–to–bottom; becomingXY ZW . The players need
to decide what to do in the first game, so a presumed game is also appended at the
beginning of the string. Tit–For–Tat —which is the most famous strategy of prisoner’s
dilemma—begins the game with a cooperation and does whatever its opponent does in
subsequent games. Using the method explained above, it is represented as CCCDCD.
If we use 0 for cooperation and 1 for defection, the string now becomes 000101. This
binary representation is well-suited to GAs, so virtually all the research done on evo-
lutionary IPD employed a GA with binary strings. It should also be noted that, for a
complete PD strategy with memory sizeM , we need22M bits for the lookup table and
2M bits for the presumed game, totally:

22M + 2Mbits. (3)

Most of the work done on evolving strategies for IPD, also this paper, usesM = 3
strategies, owing to the fact that, the search space for this memory size is huge enough
(270) to be intractable by exact search algorithms, yet it is small enough for practical
research. Because of its significance, we show a little portion of theM = 3 lookup
table in Table 4. In the table, odd bits are the player’s self prior moves, and even
bits are the opponent’s, sorted in order of time (i.e., the move in first bit is older than
the one in third). For example, according to Table 4, the entry CDDCCC is read as
“if I cooperatedbut my opponentdefectedthree games before, and Idefectedbut my
opponentcooperatedtwo games before, and both I and my opponentcooperatedin the
last game then doY ”.

CCCCCC X
...

...
CDDCCC Y

...
...

DCDDCC Z
...

...
DDDDDD W

Table 4: Part of the lookup table forM = 3. X, Y, Z, W are either C or D.

2 Genetic Algorithms

Genetic Algorithms (GAs) are a class of search methods inspired byDarwin’s Theory
of Evolution. GAs were first implemented by John Holland [9] and later popularized
by David Goldberg [7]. GAs operate on a population of candidate solutions, called
individualsor chromosomes. Conventional GAs allowed only binary encoding of chro-
mosomes; but today, real numbers, permutations, and even parse trees are also used.
There are three fundamental operators of GAs:

1. Selection (reproduction) operators: A selection operator chooses chromosomes
from the population to be processed by crossover, by taking account their fit-
ness. This way, fitter chromosomes pass to the next generation with a higher
probability.

2. Crossover (recombination) operators: As its name implies, a crossover operator
forms new chromosomes by combining (generally) two chromosomes with a
(usually) pre–determinedcrossover probability, pc. pc depends on the problem
and other parameters, but it is often taken about70−80%. Crossover is the main
search operator of GAs.

3. Mutation operators: They slightly change a gene of a chromosome with amuta-
tion probabilitypm. pm is generally taken as small (e.g.,pm ≤ 1%. Mutation is
the secondary search operator of GAs.

Another important concept in GAs is the presence of anobjective functionwhich
converts the genotype of a chromosome to phenotype and calculates itsfitness. Usually,
the objective function is explicit; that is, it evaluates every individual in the population
and returns their fitness; but in our case, the fitness of an individual depends on how
it performs against other members of the population, so there is no explicit objective
function. This is calledcoevolution.

procedure GA IPD Run
Initialize Population(Pold)
while termination criteria not satisfied do

for each chromosome ci in Pold do
Evaluate(ci, Pold)

end
Generate New Population(Pnew, Pold)
Pold ← Pnew

end
end

Figure 1: Generic genetic algorithm.

Figure 1 shows the algorithm of a conventional GA. In the figure,
Initialize Population(Pold) function merely fills the chromosomes of pop-
ulationPold with 0s and 1s, randomly.Evaluate(ci, Pold) function runs chromo-
someci against every member of populationPold including itself to compute its fitness.
Generate New Population(Pnew, Pold) function, as its name says, generates
populationPnew usingPold. The function is given in algorithm form in Figure 2.

procedure Generate New Population(Pnew, Pold)
Pnew ← ∅
while Size(Pnew) <Size(Pold) do

// Selection
c1 ←Select(Pold)
c2 ← Select(Pold)
// Crossover
if pc < r(·) then

Crossover(c1, c2)
end
// Mutation
for i = 1 to chromosome length do

if r(·) < pm then
c1i

← ¬c1i

end
if r(·) < pm then

c2i
← ¬c2i

end
end
Pnew ← Pnew / c1 / c2

end
end

Figure 2: Algorithm for generating a new population.

In Figure 2, Size(Pnew) returns the number of individuals inPnew.
Select(Pold) is a function that implementstournament selectionof tournament size
q = 4. Tournament selection takesq random individuals from the population and
returns the fittest one.r(·) is a function that returns a random number in the inter-
val [0, 1). Crossover(c1, c2) function implementsuniform crossoveras explained
in the next paragraph./ operator inserts the chromosome on the right–handside to the
population on the left–handside.c1, c1i , pc andpm are, 1st chromosome,ith bit of 1st
chromosome, crossover probability and mutation probability respectively.

Uniform crossover recombines two chromosomes by swapping each bit at the cor-
responding positions, with a fixed probability (usually 0.5%). An example recombina-
tion is seen on Figure 3.

3 The Experiment

In order to see the effects of iteration on prisoner’s dilemma, we made an experiment
similar to Axelrod’s. The employed GA had following parameters: the population
size wasm = 40, crossover probability and mutation probabilty waspc = 70% and
pm = 0.1% respectively. Each chromosome playedg = 150 games with each of the
other chromosomes and itself, and they remembered pastM = 3 moves. The GA was
allowed to iterate 1000 times. Assuming,σ(ck, cj , i) is a function that returnsck ’s
score againstcj at ith game, the fitnessφ(ck) for each chromosomeck was average
per-step payoff, calculated by:

Before crossover

1 2 3 4 5 6
chromosome 1 1 1 0 0 0 1
chromosome 2 0 1 1 0 1 1

After crossover

1 2 3 4 5 6
chromosome 1 0 1 1 0 0 1
chromosome 2 1 1 0 0 1 1

Figure 3: A uniform crossover example. Bold bits indicate the swapping positions.

φ(ck) =
m∑

j=1

g∑

i=1

σ(ck, cj , i) (4)

Now, consider Figure 4 which shows one of the experiment runs. Previously, we
mentioned that, for a one–shot game the players will always choose defection; but as
we observe from this figure, on the average chromosomes cooperated most of the time
(which is indicated by average per-step payoff=3). It is obvious from Table 2 that, why
the players always choose defection for the one-shot game; but it is not so obvious at
first sight why they cooperate when the game is repeatedly played among a popula-
tion of players. First of all, we see an initial increase of payoff of the best strategy,
while a decline of the average payoff of the population in the figure. This is because
defectiveness paid, and cooperative strategies are exploited by some non–cooperators.
Until about sixth generation, more and more chromosomes are chosen to be defective
and average payoff continues to decrease. After sixth generation though, strategies
which can both retaliate defection and reward cooperation start to emerge; finally after
eleventh generation, the population is filled with these strategies and mutual coopera-
tion is achieved.

4 Conclusions and Directions

In this paper, we explained evolution of strategies for prisoner’s dilemma using ge-
netic algorithms. It is observed that, the payoffs of the chromosomes decreased at the
beginning of the experiments, but later stabilized after the appearance of retaliative
strategies, confirming Axelrod’s results.

PD has many variants besides IPD, such as free–rider (or lift) problem, which is
generated by eliminating Equation 2, where players take turns to receive sucker’s and
temptation payoffs [11, 8]. Another important variant is N–player IPD, in which, pay-
off of a player depends on more than one player [14]. In the spatial PD, players play
the game in the one–shot fashion, but they are located on a grid playing only with their
closest neighbours [6]. O’Riordan gives a detailed review of some PD variants in [11].

References

[1] R. Axelrod. The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In
L. Davis, editor,Genetic Algorithms in Simulated Annealing, pages 32–41. Pit-
man, London, 1987.

[2] R. Axelrod and W. D. Hamilton. The Evolution of Cooperation.Science,
211:1390–1396, March 1981.

[3] R. Dawkins.The Selfish Gene - 2nd ed.Oxford University Press, Oxford, 1989.

[4] L. A. Dugatkin. Animal Cooperation Among Unrelated Individuals.Naturwis-
senschaften, 89:533–541, 2002.

[5] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, New York, 1995.

[6] M. R. Frean and E. R. Abraham. A Voter Model of the Spatial Prisoner’s
Dilemma.IEEE Transactions on Evolutionary Computation, 5(2):117–121, 2001.

[7] D. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, Reading, 1989.

[8] S. P. H. Heap and Y. Varoufakis.Game Theory : A Critical Introduction. Rout-
ledge, New York, 1995.

[9] J. H. Holland.Adaptation In Natural Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

[10] K. Lindgren and M. G. Nordahl. Cooperation and community structure in artifi-
cial ecosystems. In C. G. Langton, editor,Artificial Life: An Overview. The MIT
Press, 1997.

[11] C. O’Riordan. Iterated Prisoner’s Dilemma: A Review. Technical Report NUIG-
IT-260601, National University of Ireland, Galway, Department of Information
Technology.

[12] Y. Tekol and A. Acan. Ants Can Play Prisoner’s Dilemma. Congress on Evolu-
tionary Computation (CEC) 2003, Canberra, Australia. (To appear), 2003.

[13] A. M. van der Veen. The Evolution of Cooperation In Society: Transforming
The Prisoners Dilemma. 2000 Annual Meeting of the American Political Science
Association, Washington, 2000.

[14] X. Yao and P. J. Darwen. An Experimental Study of N-Person Iterated Prisoner’s
Dilemma Games.Informatica, 18:435–450, 1994.

0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4
GAIPD

Iterations

A
ve

ra
ge

 p
er

−
st

ep
 p

ay
of

f

Best
Average

Figure 4: M = 3 GAIPD run. The run is 1000 generations long, but shown here
partially.

